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Abstract 

The electronic structure of a ~r-network polymer with random numbers of two 
types of monomer units is considered in a "conjugated circuit" resonance-theoretic 
framework. A transfer-matrix technique for computing relevant ensemble-average 
energies is described and applied to a few example simple benzenoid systems. A 
type of long-range ordering is noted to be relevant, and some of its implications 
are discussed. 

1. Introduction 

Recently, there has been much interest [1--4] in n-network polymers and 
their electronic structure. In both physics and chemistry, the relevant polymer struc- 
tures have been viewed to be regular, i.e. translationa~y symmetric. However, polymer- 
ization processes typically proceed with varying amounts of  impurities of  defects. 
Indeed, the standard phrase [5] "copolymerization" applies to the oft-encountered 
regime with a high concentration of  two types of  monomer units. Here, we investigate 
the effects of  a random admixture of  two types of  monomer units upon the electronic 
structure of  n-network polymers where, because of  n-electron "delocalization", one 
might expect that "long-range" effects of  the disorder are most pronounced. In allow- 
ing the possibility of  such qualitative effects, we focus on the limit of  very long 
polymer chains. 

Although there has been much previous work [6] on the effects of  disorder 
upon electronic structure, our present study differs in a couple of  qualitative ways. 
First, our monomer units are generally more complex than the usual single site. 
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Second, rather than the usual molecular-orbital (or tight-binding band-theoretic) 
approaches, we take a valence-bond resonance-theoretic approach involving Kekul6 
structures, as outlined in sect. 2. The "transfer-matrix" computational method 
described in sects. 3, 4 and 6 is an extension of that which we have previously used 
[7,8] on regular chains or strips. Section 5 concerns "boundary conditions" at the 
strip ends, which turns out to be of  some use in sects. 6 - 9 .  Questions of asymptotic 
behavior of averages for different ensembles are addressed in sects. 7 and 8, and some 
of  these questions are answered. Section 9 directs attention to a type of  long-range 
order involving different n-bonding patterns. The possibility of phase transitions 
between phases of different long-range orders is noted. Section 10 summarizes the 
relevant computations in applications. Sections 1 1 -  14 illustrate the application to 
four example systems, at least one of which exhibits a transition between two dif- 
ferent phases. 

2. P r o b l e m  f o r m u l a t i o n  

For the n-network polymer studied here, a simple resonance-theoretic model 
is used, namely the conjugated-circuit model. This model may be motivated from an 
empirical point of  view [9] elaborating Clar's ideas, or from a more quantum- 
chemically motivated view [10]. Either approach leads [11 ] to simply stated subgraph- 
enumeration problems. The first problem for a n-network with graph G is that of  
finding the number K(G) of its Kekul~ structures. Each such structure may be viewed 
as a union or superposition of G and a unique corresponding 1-factor, a 1-factor of  G 
being a spanning subgraph every factor of  which has degree 1. Given a 1-factor and an 
(even) length-m cycle of  G, this cycle is said to identify a conjugated m-circuit of the 
associated Kekul~ structure iff alternate edges of this cycle occur in the 1-factor. The 
second type of problem of interest is to fend the sum #(m)(G) over all Kekul~ struc- 
tures of the numbers of conjugated m-circuits in each structure. Then an estimate of 
the total n-electron resonance energy for the molecule G is [9, 11] 

E(G) = ~ {Rp #(4p + 2)(G) + Qp #(4P)(G ) }/K(G), 
p 

where Rp and Qp are parameters. 
For the polymer problem here, we seek for various properties associated 

averages or, more generally, weighted sums, over a relevant ensemble of systems G. 
The members of  such an ensemble will have a given number L of monomers, attention 
here being restricted for the most part to just two types of monomer units, say A and 
B, at any position along a polymer chain. An average Kekul6 structure count over all 
chains with a and b = L - a units of  types A and B, respectively, is 
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( a  ~ b ) - i  a,b 
Ka, b = Z K(G), (2.1) 

G 

the binomial coefficient simply being the number of terms occurring in the sum. A 
weighted sum over various choices of a and b is defined as 

L 

K L =- KL(X, y)  = ~,, K(G) X a(G) yb(G), (2.2) 
G 

where a(G) and b (G) are the numbers of A and B monomer units in G, and the sum 
is over all systems of length L. Mathematically, x and y are variables in a generating 
function, with (a~ b )Ka, b being the coefficient of xay b. In a more physico-chemical 
vein, we view x and y as activities, for A and B monomers. The function of (2.2) is 
clearly converted to a (weighted) average upon division by 

L 

Z xa(G)yb(G) = (X + y)L,  

G 
(2.3) 

this average being independent of a rescaling of both x and y. Then, we will ultimately 
choose 

x + y = 1, (2.4) 

whence (2.2) itself becomes the (sought-after) average. 
In addition to the Kekul6 structure counts Ka, b and KL, conjugated-circuit 

counts and energies are defined in exact parallel. The estimation of the overall energies 
averaged over either ensemble is to be made in terms of these various counts, as 
described in sect. 8. 

There are crucial chemical assumptions involved in identifying the particular 
ensembles as in (2.1) and (2.2) as being those of experimental relevance. Indeed, the 
"proper" choice of ensemble relates to the mechanism of chain formation if we 
allow for the possibility that the orderings of monomer units that result can be 
quenched in (i.e. with no relaxation after being grown). For the ensemble of (2.2), 
one consistent growth process is that where A and B monomers would slowly and 
randomly impinge (with some relative frequencies) upon the growing chain end, such 
that whatever hits the chain end sticks upon contact. More general ensembles can be 
imagined wherein A and B monomers attach during growth with different proba- 
bilities to different types of chain ends. Then an ensemble with additional activity 
weightings arises: for instance, u, v and w to be raised to powers aa(G), ab (G) = ba(G) 
and bb (G), being numbers of nearest-neighbor AA, AB and BB monomer pairs in 
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a polymer graph G. Although such ensemble averages often are treatable via the same 
type of transfer-matrix approach discussed in the following, we presently restrict 
attention to the simpler cases of (2.1) and (2.2). 

3. T r a n s f e r  m a t r i x  a p p r o a c h  

The various desired enumerations are to be carried out via transfer matrix 
[7,8,12]. There are basic transfer matrices for each type of monomer unit. To con- 
struct these, imagine a general polymer chain divided into various monomer cells with 
the cell boundaries intersecting bonds rather than sites. For example, in fig. 1 such 

Fig. 1. Portion of a polyphene polymer with random 
straight-ahead (anthracenoid) and bent (phenanthrenoid) 
linkages. The dashed lines indicate divisions between 
monomer cells. 

cell boundaries are indicated by dashed lines. The o-bonds cut through on a boundary 
can be "occupied" in different manners in various 1-factors. If there are P bonds that 
are cut, then generally there will be as many as 2 P ways of  occupying them in a 
1-factor. Each such manner of  occupation is a local state It), designatable by a se- 
quence of  P binary digits (1 and 0) to indicate which are occupied and which are 
unoccupied. The four types of  local states, and their binary designations, which arise 

, % 
I I 

i I i 

01 10 O0 11 

Fig. 2. Local (bond-occupancy) states for the edges inter- 
sected by the dashed cell-boundary lines of fig. 1. 

in conjunction with the system of fig. 1 are indicated in fig. 2. Next, we let (~'1T A I t)  
be the number of  1-factors that can occur within a single A-type monomer cell if 
the first side of  the cell is constrained to have local state It) and the succeeding side 
along the polymer chain is constrained to have local state I~'). The array of these 
numbers is the transfer matrix TA, and T B is defined similarly. The trace of  an L-fold 
product of  transfer matrices is then of  the form 
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tr 
- -  /;' ~L i = 1 

where ~o = ~L + 1 and the C/ are A or B. However, each product on the right-hand 
side is seen to give the number  of  Kekul~ structures in a cyclic polymer chain with 
local states ~1, ~2, • • • , ~z located at the positions 1, 2 . . . .  , L.  Consequently, the 
total trace o f  (3.1) counts the total  number  o f  Kekul~ structures K(G)  in a polymer G 
identified to the sequence of  monomers C i . Then a weighted summation over all 
possible such sequences would lead to KL; this weighted sum can be expressed as 

K L = tr (x  T A + y TB) L = tr ~-L, cyclic chains, (3.2) 

where we have introduced an ensemble transfer matrix 

3- - x T A + y T B , (3.3) 

I f  K z is obtained as a polynomial in x and y ,  then Ka, b can be recovered from the 
coefficient o f  xay b. 

As an example, consider the case o f  fig. 1, where each cell is seen to involve 
either a straight-chain "anthracene"  (A) linkage or a bent  "phenanthrene"  (B) linkage. 
For an A- type  cell there are just  five local Kekul~ structures within a monomer  cell, 

I i i I i i 
i I i i i i 
i i i i i i i i 

Fig. 3. Manners of "growth" of Kekuld 
structures from one local state (on the left) 
across an antluacenoid linkage to another 
local state (on the fight). 

as illustrated in fig. 3. With the local states ordered as indicated in fig. 2, the resultant 
transfer matrix takes a block-diagonal form 

0 0 

1 0 (3.4) 
ira = 0 1 " 

0 1 
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I ~ I I i I , . ~ .  s -. , -. , .. ~ . . ~ < .  

I I 

Fig. 4. Manners of  " g r o w t h "  o f  Kekuld 
structures across a phenanthrenoid  linkage. 

For a B-type cell, the five local Kekul6 structures of  fig. 4 lead to a transfer matrix 

0 0 (3.5) 
T B =  0 1 

0 1 

Hence, the resultant ensemble transfer matrix is 

(i y ° 
3- = x 0 . (3.6) 

0 x + y  

0 x + y  x 

Taking powers of this, either algebraically or possibly at given values of x and y ,  
would then allow one to obtain the Kekul6 count weighted sum K L via (3.2). 

4. Connection matrices 

The conjugated-circuit count quantities ~ ( m )  c a n  be obtained [7] with the use 
of  connection matrices in addition to the transfer matrices. The conjugated circuits 
around a cycle in any region of the chain may be counted. Consider a region con- 
sisting of  as few monomer cells as possible, such that the occurrence of  a conjugated 
m-circuit around a chosen m-cycle can be detected solely from a specification of a 
Kekul~ structure within this region. Then let (~" I C(Fm) I ~) denote the number of  Kekul~ 
structures, first with a conjugated circuit around the chosen m-cycle and second with 
local states l 0  and 1~') at the two boundaries of this region consisting of  a short 
sequence of  monomer ceils identified by the label F. The array C (m) is a connection 
matrix. Now, much as in (3.1), the number of Kekul~ structures with the considered 
type of  conjugated m-circuit in a basic region consisting of cells j through k is given as 

tr Tq I-I Tc 2 (4.1) 
• ~ 
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Then, an ensemble connection matrix may be introduced 

~(ra) = E c~ra)xa(F)Y ~F), (4.2) 
F 

where a(F) and b(F) are the numbers of A and B monomers in the region F. Then 
we may evaluate ensemble sums for the considered type of  conjugated m-circuits at 
a given location on the chain as 

#L (rn) = L tr (~(m) ~L - c(rn)), cyclic chains. (4.3) 

In the event, as in sect. 14, that there are different types of conjugated m-circuits 
with the same value of m but different values of  c(m), then there are several corre- 
sponding connection matrices q~ (m), ~(m)', etc., and #(,1) is given as a sum over 
corresponding terms as on the right-hand side of (4.4). 

As an example, consider chains as in fig. 1, with anthracene (A) and 
phenanthrene (B) linkage. Of the five single-cell structures in fig. 3, only the fourth 
and possibly the third lead to a conjugated 6-circuit around the 6-cycle, most of  
which lies within a single cell. The count of  occurrences of the conjugated 6-circuit 
in the fourth structure must equal that where the alternation pattern of single and 
double bonds around the same cycle is interchanged. Hence, we need count only 
the first type of  circuit (as represented in the fourth structure in fig. 3) and multiply 
by two to also account for the second type. Thus, we take the only nonzero element 
of  ~(6) to be (111~(6)100) = 2. Likewise, one sees that the fourth structure of  fig. 4 
leads to our sole nonzero element of  the B-matrix, ( l l I~(B6)I00)--2 .  Then, the 
ensemble connection matrix for conjugated 6-circuits is 

(0 0 0 
~(6 )  = 0 0 0 . (4 .4 )  

0 0 0 

0 0 2x + 2y 

The next smallest size conjugated m-circuits in the present example have m = 10 and 
require c(m) = 2 cells. For each pair of  types for these two cells, the associated 
Kekul~ structures with a conjugated 10-circuit around the 10-cycle of these two cells 
are shown in fig. 5. The resultant ensemble connection matrix for conjugated 10- 
circuits is (0 0 0 0) 

0 0 0 0 (4.5) 
%(10) = 0 0 0 0 " 

0 0 2(x + y)2 0 



316 D.J. Klein et aL, Resonance in random ~-network polymers 

I ! 

I 

I I 

I 

Fig. 5. Different manners of having a conjugated 
6-circuit embedded within two monomer cells 
of the example polyphene system of fig. 1. 

In this paper, we neglect conjugated m-circuits with m/> 12. 

5. S t r ip  ends  

The ideas of the preceding two sections are generally extendable to treat the 
case where boundary conditions other than cyclic are imposed. Sums overs products 
of transfer matrix elements still yield the desired count much as in (3.1), but with the 
condition that the initial and final local states may be restricted. If the two ends of 
the polymer chain are of two fixed forms, the initial and final local states are inde- 
pendently restricted to two corresponding states l I )  and IF) ,  respectively, and 

K L = ( F I ~ L I I )  (5.1) 

in place of (3.2). More generally, a collection of types of ends may be allowed. The 
general expression is then 

K L = tr Co ,~L), (5.2) 

where the end matrix p identifies the type of allowed chain ends and any correlation 
between these ends. Similarly, the conjugated-circuit count formula of (4.4) extends 
to 

L - c ( m )  
a r i ( ~ ( m ) o T L  - c ( m )  - #(m) = Z t r (p~;  ~ ,9 i), (5.3) 

i = 0  

where the neglected end terms here involve conjugated circuits which impinge upon 
the local end states. In the limit of long chains (L -+ oo), these will be neglected, 
although if one desired they could be handled by introducing special end correctors 
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p(m). In (5.2) and (5.3), the choice p = 1 yields (3.2) and (4.4). The choice p = i F )  (II 
in (5.2) yields (5.1). The choice with p having the only nonzero elements (= 1) on 
the "cross diagonal" corresponds to M6bius (twist) boundary conditions. 

If the transfer matrix takes a block-diagonal form, different types of  ends as 
specified by p may yield quite different predictions. That is, if p is nonzero on only 
one of  the blocks of ~ (and hence also of C), only properties associated to that block 
prevail. For the illustrative example of the preceding two sections, just such a block 
diagonalization applies: property predictions based on the first block are associated 
to quinoid structures, whereas those based on the second block associate to benzenoid 
structures. Because of  such block-diagonalization there is a type of long-range order, 
that indeed is a general occurrence and of physical relevance, as is discussed in sect. 9. 

6.  E igenana lys i s  

The transfer- and connection-matrix expressions of the preceding two sections 
can be refined via eigenanalysis. The ensemble transfer matrix has (at least one pair of) 
right (r) and left (1) eigenvectors for each eigenvalue X, 

?il X, r) = XlX, r) 

( X , l l ~  = X(X,l l .  
(6.1) 

For each X corresponding to a 1 by 1 Jordan block, we may biorthonormalize such 
eigenvectors: 

(X,IIX', r) = 6 (X, X'). (6.2) 

If ~ is diagonalizable, then the spectral resolution of ~ enables (5.2) to be rewritten as 

K L = Z ( X , l t o l X , r )  xL- (6.3) 
L 

Similarly, the conjugated-circuit enumeration of  (5.3) becomes 

L - c ( m )  

L m) , (6.4) = Z Z (X ' l lp lX"r ) (X ' ) i (X" l [~(m) lX ' r )XL-c (m) - i  
i = 0 k , k '  

where here some end corrections are neglected. 
The eigensolutions to ~7 provide a means to make several desired (weighted) 

enumerations, especially for long chains. For every long chain, it is seen from (6.3) 
and (6.4) that only the maximum-magnitude eigenvalue(s) come to dominate. Pre- 
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suming that there is only one such (non-degenerate) eigenvalue A which has an 
associated nonzero matrix element over p, we have 

K L-+ ( A , 1 I p I A , r ) A  L 

#(m) _+ L ( A ,  11 p lA ,  r) (A,  l l~ (m) lA,  r) m L -c(rn) 
(6.5) 

as L ~ o0. Because the quantity K L involves a (positively weighted) nonzero enumera- 
tion when there is at least one Kekuld structure, A must be positive real. Since the 
transfer matrix elements are non-negative, Fr6benius-Perron theory [13] applies, 
and the eigenvectors associated to the overall maximum-magnitude eigenvalue for a 
block of 3- can be given with all coefficients real and positive on that block (while zero 
on other blocks). Thus, the condition 

( A , 1 1 p l A , r )  4= 0 (6.6) 

is realized for the largest eigenvalue of at least one block of 3-. 
As an example, we may continue with the consideration of  the type of polymer 

in fig. 1. From (3.6) one may obtain (right) eigenvectors 

1(,) 
and I x - y )  = (6.7) I x + y )  = X/~ 1 - 1  

with eigenvalues x + y and x - y ,  respectively, for the first block. Here, the left eigen- 
vectors are obtained by transposing. For the second block, the left and right eigen- 
vectors are less trivially related 

IX,r) = ( - y  ) 
x + y - X (6.8) 

(X,11 = { y ( x - X )  + ( x + y - X ) y }  - I ( x - x  y) 

for the eigenvalues 

Y s 2 ?t = x +-'~ -+ X/xY + 7~y (6.9) 

as are all well-defined for x i> 0, y > 0. For the remaining special singular case of 
y = 0, the whole second block of  3- identifies a single Jordan block whose single fight 
eigenvector is the last basis vector, and whose eigenvalue is x. 
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7. Long-cha in  l imit  

For the large sysem limit, "bulk" properties often exhibit an independence 
of the ensemble chosen for making the calculation. A first step toward the elucidation 
of this feature concerns the nature of the L -~ o~ asymptotic forms for the Kekul6 
structure counts 

and 

K L -+ CA L (7.1) 

Ka, b -+ C L ~ A ~ ,  (7.2) 

where L = a + b is the chain length and a = alL. The first of these relations (7.1) 
follows immediately from (6.4) for the case where ~- has its maximum eigenvalue in a 
trivial (i.e. 1 by 1) Jordan block. The second form (7.2) is a more delicate matter 
and may occur only in a locally averaged way. The form of (7.2) can in principle be 
obtained from a knowledge of K L if we note that (a~ b)Ka, b is simply the coefficient 
of xay L -a in K L (x, y). Then, from the Cauchy relation 

( )  1 ~  KL(z'I)  I L Ka b - 27ri z a +-------i- dz, (7.3) 
a 

with the integration contour around the origin enclosing no singularity of KL(Z, 1). 
As a consequence, the Ka, b consistent with K z is unique. Hence, we merely seek to 
show that the form (7.2)leads to (7.1). 

We expand K z in terms of the Ka, b 

K L ~a ( ~ ) K a ,  L_axayL-a ~ ~a L ~ ( L  ) = C A LxaLy (I-a)L (7.4) 
aL a 

With the presumption that A a (and Ca) vary sufficiently gradually with a, as may 
require local averaging, the sum here may be approximated as an integration over a. 
Further, utilizing Stirling's formula for the factorials, we obtain 

1 LI+U2 I C~ [ (x)a (1-x)l-a] g 
KL ~-- ~ -  ~ / a ( 1 - a )  Aa ~ d x .  (7.5/ 

0 

For the limit of  large lengths L, the a values making the dominant contribution to 
the integral are those near the maximum of the factor raised to the Lth power. Hence, 
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we approximate this factor near its maximum at a = ~, for whichwe assume 0 < ~ < 1, 
so that [14] 

(x)oi  o 
f ( a )  - A \ 1 - a ]  ~ f ( ~ ) { 1 - K ( a - ~ ) 2 }  , (7.6) 

where K is a "scaled" second derivative with respect to a, at a = ~.  Then 

1 

L~+I/2 C~ I e- ~(a-~)=L 
K L ~- ~ ~(1 _ ~ )  {f(~)}L d a .  (7.7) 

0 

However, by introducing a new variable u - ( ~ -  N) Kx/"~T, one may evaluate the 
remaining integral for the limit L ~ ~ .  We find 

ca 
KL = X / 2 K R ( 1 - R )  L{f(-d)}L (7.8) 

Evidently, this conforms with the established asymptotic form of (7.1), and 

A = A~ \ 1 - ~ I  

C = C~{2K~(1 _ ~ ) } - U 2  (7.9) 

= 0 .  

If the maximum N lies instead at the end points of  integration, ~ = 0 or 1, then the 
arguments and formulae of (7.9) are modified, in particular then ~ = + 1/2. 

8. L o n g - c h a i n  e x p e c t a t i o n  va lues  

Computational convenience is achieved if the contribution of conjugated 
m-circuits to an ensemble-average energy per site in long chains may be argued to be 
given in terms of 

6 (m) = lim #~m)/LK L. (8.1) 
L --+ oo 

It is to be emphasized that these #(m) values generally differ (at the same value of 
x and y)  from what might be identified as the physically relevant averages 



D.J. Klein et al., Resonance in random n-network polymers 321 

1 ~(m) = lim L -L ~[ xa(G)Yb(G) e(m)(G)' (8.2) 
"-+~ G 

where 

#(m)(a) 
e ( " )  (a) = (8.3)  

LK(G) 

That is, the ratio of the averages as in (8.1) generally differs from the average of the 
ratios as in (8.2). 

Nevertheless (at least for chain length L -~ oo), we conjecture a simple relation- 
ship. This relationship is to be discerned in terms of a hypothesized "normalized" 
distribution pL(a). That is, (LL)PL(a)da is to be the number of length-L systems, 
with alL taking a value between a and a + da.  The binomial coefficient (having to 
do with the different ways of distributing aL A-monomers amongst L positions) is 
to separate out the rapidly varying part of  the overall distribution. It is presumed, 
as in indicated in the previous section, that #L(a) varies with L at most as a (bounded) 
power of L. Then, as is implied from sect. 7, 

1 j (L) ,L KL = KaPL(a) aL { x C ~ ( 1 - x ) l - a  da  

o 

1 

= J 
0 

L) _al L 
#(m) pL (OL) (~L {xa(1 - x ) l  doL, (8.4) 

with the integrals dominated by a values near the N value identified in terms of Aa 
following eq. (7.5). However, now also 

1 ) 
~(rn) = e(rn)c, PL (a) aL 

0 

xa(1 -x)X -a} da,  (8.5) 

with the dominating a values not determined in terms of Aa.  Rather, they are similarily 
seen to be near a = )?, which is at the maximum ofxa(1  _ x)l -a(aLL )I/L . Thus, at the 
same value of  x (and y = 1 - x), we see that a and x are generally different and so 
also are e (m) and ~(m) of (8.1) and (8.2). Suppose instead that we compare e (m) and 
~(m) at different values of x. Indeed, suppose x is replaced by ~ in the second expres- 
sion with ~ = N. Because the Lth powers (including a factor arising from the binomial 
coefficient) involved in the integrals of  (8.4) sample mainly systems with a values near 
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the average, we then expect the same system to be sampled so that e (m) = ~(m). More 
explicitly, indicating the x- or ~-dependence, we write 

e(m)(x) = ~ ( m ) ( ~ ) ,  ( 8 . 6 )  

which is the desired relation. 
A final point concerns computationally amenable expressions for e (m) and ~. 

First, from (6.4) one obtains 

e (m) = (X,llc~(m)] A, r)/A c(m) . (8.7) 

Via a parallel development, 

1 ~ K L ( X , Y ) ]  1 OA 
= lim - , p  = , at x + y =  1, (8.8) 

In A In L - 4 . ~  L / k  L 
X X 

where we have utilized (5.1), (3.3) and (6.4). Now, with the use of the Hellman- 
Feynman theorem (or first-order perturbation theory), one obtains 

~- = x(A,11TAIA, r) /A.  (8.9) 

The overall ensembe-average energy per monomer 

e - -  E { R p e  (4p+2) + Qpe Op)} (8.10) 
p > ~ l  

has parameters as in (2.1). Here, e (m) and e are viewed as functions of ~ or (in 
abbreviated form) just a, with (8.7), (8.9) and (8.10) being the desired computation- 
ally amenable expressions. 

9. L o n g - r a n g e  sp in-pa i r ing  o r d e r  

Generally, it may be shown that there is some blocking (e.g. block diagonaliza- 
tion) of  the transfer and connection matrices. First, for a local state I~)with n-bond 
occupation numbers ~1, • • •, ~w = 0 or 1 on the w different interconnections between 
monomer units, we assign a resonance-parity quantum number, defined as 

q~ -~ 

w 

- ,  ~ ~, = odd 
i = 1  

w 

+ ,  -- e v e n .  

i = 1  

(9.1) 
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Next, in any Kekul~ structure, each double bond completely within a unit cell 
accounts for two of the n (C) sites in a monomer cell of  type C, while each double 
bond crossing a cell boundary (and appearing in one of the two associated local 
states) utilizes but one site in the cell. Thus, for a cell bounded by local states If) and 
I ~'), the quantity 

W W 

n ( C ) -  ~. ~ i -  ~. fi (9.2) 
i = 1 t = 1 

is just twice the number of double bonds entirely within the cell. Therefore, the parity 
of  (9.2) must be even and 

(g'lTcl~) = 0 ,  if q ~ = - ( - 1 ) n ( C ) q ~ .  (9.3) 

Hence, T C is blocked with regard to resonance parity quantum numbers; this blocking 
is either block- or cross-block-diagonal as n (C) is even or odd, respectively. Similar 
blocking applies to the corresponding connection matrices. 

In the example with anthracene- and phenanthrene-like fusions, two 2 × 2 
diagonal blocks are readily discernable in (3.6), (4.4) and (4.5). The first and second 
blocks correspond to the spaces with bases 101), 110) and [00), 111) , respectively. 

The resonance parity quantum number and associated blocking has physico- 
chemical consequences, which we consider here for the case where all n (C) are even. 
This entails a type of long-range spin-pairing order [3,6,15] where the resonance 
parity of each local state down a polymer chain is the same. In this case, the two 
blocks (q = + and - )  may be treated separately to yield two different energies 

e q = ~, (Rpe (2p+2)q + Qpe(2P)q), (9.4) 
p ~ l  

where e (rn)q is computed only from the q = + and q = - blocks. That is, they are 
computed in the case where one views the choice of  ends, as embodied in P, to be 
made so that the p is simply a projection onto one or the other block space. Denoting 
the largest eigenvalue of  block q by Aq, we have 

~(L m)q - +  Cq L e(m)qA L (9.5) q ,  

where 
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C q = ( A q , l l p q l A q , r )  

e (m)q = (Aq , l l~ ( rn ) lAq , r )  
(9.6) 

so that the two quite different energies occur. Thus, the more stable energy e q Can 
change abruptly from one value of  q to another with a gradual change in system 
parameter, such as the fraction a of  the system which is of  type A monomers. More- 
over, the asymptotic result so obtained would be the same as that obtained with 
cyclic boundary conditions only when the largest Aq corresponds with the lowest 
e q. Of course, this correspondence is viewed in resonance theory [16] to apply 
approximately, at least for benzenoids. Generally, however, this would lead to a 
non-physical discontinuous jump in the system energy. The correct physico-chemical 
choice (as L ~ oo) is just the lower of  the two e q, a jump from one to the other 
typically identifying a "first-order" transition, here occurring as a function of  a at 
zero temperature. Moreover, at such a crossing there is generally a discontinuous 
change in the patterns of bond localization, i.e. the bond lengths in A and B cells 
change abruptly. Yet further, the consequent degeneracy of  q = + and q = - phases 
at the crossing leads to the possibility of a novel type of solitonic excitation [ 2 - 4 , 7 ] .  

10. Overal l  c o m p u t a t i o n a l  s c h e m e  

At this point, a systematic overall computational scheme for long chains has 
emerged. For given monomer units A and B, we follow a sequence of steps: 

(1) Determine T A, T B , ~ ( m ) , ~ ( m ) , f o r  m<~ 10. 
(2) For a choice of  x and y = 1 - x, determine ~ via (3.3) and ~(rn) via (4.2). 
(3) Find the maximum eigenvalue A in each block of ~- and determine the 

associated eigenvectors. 
(4) Determine e (m), -if, and e associated to each block of ~using (8.7), (8.9) 

and (8.10). 

Here, A is a Kekul~ count (per monomer), while e (and log A) is an energy estimate. 
Each of A, e ( m ) ,  and e is viewed as a function of  a, the fraction of A monomers, 
which may be varied (from 0 to 1) by varying the choice of x from 0 to 1. Finally, 
from e q versus o~ curves for different long-range order parameters (e.g. parities q), 
various physico-chemical consequences (e.g. zero temperature phase transitions) may 
be deduced via considerations as in sect. 9. 

1 1. C a t a c o n d e n s e d  p o l y p h e n e  cha ins  

With the concepts and methods from the preceding sections set in place, we 
now investigate several simple systems, the first of  which is the system of  fig. 1 used 
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as an illustrative example in much of  the preceding. The maximum eigenvalues of the 
first (q = - ) and second (q = + ) blocks of  3- are seen from the results at the end of 
sect. 6 to become 

A _  = 1 

A+ = 11 + x + x/(1 - x )  ( 5 - x ) } / 2  
(11.1) 

when the . . . . . .  " actixaty-normahzatlon of  (2.4) is imposed. Then the asymptotic counts 
become, with some use of  (4.4) and (4.5), 

K 2 - +  C -  

+ L + - + C A +  K L 
(11.2) 

L m)  - -+ 0 

#(m)+ -+ C+L e ( m ) + A L  
+ ' 

where #(m) (or, more basically, e (m)-) is realized only to approach 0 in the sense 
that whatever terms do occur are not size-extensive (being associated to the ends 
only). Next, utilizing (8.7) and the eigenvectors of  sect. 6, we have 

6 ( 2 m ) -  = e (8)+ = 0 

e (6)+ = e (10)+  = 2X/(1-x)/(5-x) 
(11.3) 

As a consequence our estimate of  the overall n-resonance energy per site is 

e -  = 0 

e + = 2(R 1 + 

(11.4) 

The corresponding fraction of  A monomers is computable, via (8.9) and (11.1), to 
yield 

O~ = X 

o~ + = x { 1  + X/(1 - x ) / ( 5 - x ) } / A + ,  

(11.5) 

where again we have taken x + y = 1. A plot of  the resultant ensemble-average energy 
as a function of  A-monomer fraction a is shown in fig. 6. 
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0 ,9  

0.6 

0.3 

0.0 

f 

///// 

0.5 1.0 

Fig. 6. The resonance energy per monomer (solid line) and 
the activity (dashed line) of the preferred q = + phase of the 
random polyphenes of sect. 11 as a function of the fraction 
of anthracenoid linkages. 

12. p-phenyl-a-napthyl chains 

This example involves the two monomer  units o f  fig. 7. These can be connected  
together  in random sequences, as in fig. 8. Since there is but  a single connect ion  
between each cell, the possible local states are: 

IO) and I 1 ). (12.1) 

A 

B 

Fig. 7. Monomer cells for the random polymer of sect. 12. 

Fig. 8. A portion of a random polymer of the type discussed in sect. 12. 
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Moreover, since the first is identified to a resonance quantum number of q = + and 
the second to one of  q = - ,  the transfer and connection matrices turn out to be 
(block) diagonal. The relevant matrices for a benzene cell are readily found to be: 

0) 
TA = 0 1 ' 0 ' -A 0 0 ' 

where, for instance, the first element of  T A indicates that there are two Kekul6 
structures if the incoming and outgoing bonds are single. That the off-diagonal ele- 
ments are 0 indicates there are no Kekul6 structures when one of  the joining bonds 
is single and the other double. For a napthalene cell, one similarly obtains 

( :  0 )  C(6) = ( 4  0 )  c o o )  = ( 2  0 )  (12.3) 
T B =  2 ' - B  0 2 ' 0 0 " 

Then, the ensemble matrices are 

( 2 x : 3 y  0 ) (2x+4y O) (20 : )  
~- = ~ ( 6 )  = ~ 0 o )  = . ( 1 2 . 4 )  

x + 2y ' \ 0 2y ' 

The eigenvalues are of  course just the diagonal elements of  ~- and the eigenstates are 
the basis vectors of  (12.1). Clearly 

2x 2x 
0t  + - -  

2x + 3y  3 - x 

X X 

x +  2y 2 - x  

(12.5) 

where we have used x + y = 1. Similarly, the resonance energies are 

4 - 2x 2 - 2x 
e + = R 1 + - -  R 2 3 - x  3 - x  

- l{4_rv}R 1 + 2 - ~ -~ { 1 - c~ } R  2 ( 1 2 . 6 )  

2 - 2x 
e -  - 2 - x  RI  = { 1 - a } R  1. 

For any parameterization with R 1 > 0 and R 2 i> 0, it may be seen that the q = + 
phase is more stable for all a,  and thus describes the ground state. 
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1 3 .  A n t h r y l - x - n a p t h y l  cha ins  

The next example system consists of  the two singly-connected monomer 
units of  fig. 9. The local states are again as in (12.1), and the treatment is rather 
similar to that of  sect. 12. The present resultant ensemble matrices are 

(4x+.o) (6Xo4yO) ~ - =  , ( ~ ( 6 ) =  , c ~ ( 1 0 )  = . 

0 4x + 2y 8x + 2y 0 

The fractions of  A ceils are (13.1) 

4x 4x 

4 x + 3 y  3 + x  

4x 2x 
~ -  = - , ( 1 3 . 2 )  

4 x +  2y 1 + x  

and the resonance energies per cell are 

e÷ 6x + 4y  4x + 2y 
= 4 x  + 3y R1 + R2 4x + 3y 

2R2 ) + 1 I R 2 ) ~ ÷  -- (-~R I + ~  ( ~ R I  + (13.3) 

8 x +  2y 
e -  4 x + 2 y  R1 = R1 + R I ~ - "  

With parameters [ 10] 

R 1 = 0.841 eV and R 2 = 0.336 eV, (13.4) 

we obtain a plot of  these energies as a function of a = N+ = ~ - ,  as in fig. 10. It is seen 
that with increasing a, there is a (zero-temperature phase) transition from q = - to 
q = + at o~= ~."~ 2 Here, the joining bonds between monomer units changes abruptly 
from single to double. Further, precisely at the transition point where there is phase 
degeneracy, solitonic excitations [2,4,7] can arise. 
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B 

A 
Fig. 9. Monomer cells for the random polymer of sect. 13. 
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0.25 

Fig. 10. The q = + 

I I I ~ IZ 

0,50 0.75 1,00 
and q = - resonance energies per 

monomer for random polymers of the type in sect. 13 as 
a function of the fraction a of anthracene monomers (-4). 

14. Polynapthalenoid chains 

Recently, the polymeric species with unit  cells of  type A in fig. 11 has [17] 
been synthesized and found to be rather conductive. In another synthetic approach 
[18],  an excess of  hydrogen remains, perhaps due to unit cells of type B or B '  in the 
figure. There are eight imaginable ways to occupy the three boundary bonds on one 
side of a monomer  cell. However, 1000) does not  occur for any Kekul6 structure, 
and I 111 ) does not  occur for any involving a B or B '  cell anywhere along the polymer 
chain. Hence, there remain two different parity spaces with local-state bases 



330 D.J. Klein et aL, Resonance in random n-network polymers 

A B B' 

Fig. 11. The three types o f  6-site monomer  cells 
for the random polymers considered in sect. 14. 

I1 l o )  = /L=(  ~ + 
k___/ 

11oi)-- ~-< ~ + 

/----k 

Io11)= ~ i_~ 

Fig. 12. Mannerofpropaga t ion  o f  q = + Kekul~ 
structures across an A- type  monomer  cell. 

1100), IOlO), I 0 0 1 ) ,  q = - 

I i 1 0 ) , 1 1 0 1 ) , 1 0 1 1 )  , q  = +. 
(14.1) 

The odd- and even-parity blocks for an A cell are (11o) ( 11) 
TA ÷ =  1 2 1 , TA-:  1 1 , 

0 1 1 1 1 

(14.2) 

where, for instance, the diagrammatic derivaton of  the q = + block is outlined in 
fig. 12. For the B-type cells, we presume that the B and B'  cells (of fig. 11) occur 
with equal likelihood, so that in place of  T B in the ensemble matrix ~- we simply insert 
the average of transfer matrices for B and B'. We denote this average simply by T B, 
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and find its q = + block to be half of  T~ and its q = - block to be the same as Ta-. As 
a consequence 

3 .+ = (x+y/2)T  

= (x+  y)  
(14.3) 

Now the maximum eigenvalues to the 3 -q are found to be A ÷ = 3(x + y/2)  and 
A- = 3(x + y) .  At this point, within the Kekul~ count approximation [16] for esti- 
mating resonance energies, one obtains two (q = + and q = - )  degemate phases only 
at a single point a = x = 1. This marginal circumstance can quite possibly be expected 
to be modified in a qualitative way with better energy estimates. 

For the conjugated-circuit connection matrices, care needs to be taken since 
generally there are two ways of  realizing relevant cycles as occurring within o n e  
(c(m) = 1) or two (c(m) = 2) monomer cells. In particular, this circumstance applies 
for 6-cycles occurring in A cells, as indicated in fig. 13. Hence, we find 

~ ( 6 ) ' +  = 2x , 

0 

~ ( 6 ) ' -  = 0 ( 1 4 . 4 )  

for that cycle (with c(6) = 1) identified by a "1"  in fig. 13, and 

(~(6) + = 

 222) ( 44) 
x + 2 4 2 , ~(6)-  = ( x + y ) 2  4 4 (14.5) 

0 2 2 4 4 

for the cycles (with c(6) = 2) identified by a "2"  in fig. 13. The various possible 
conjugated 10-circuits all span two monomer cells and yield 

xy (° 2 i) (i2i) ~ ( 1 0 ) +  = X2 + 7 2 8 , ~ 0 0 ) -  = (X + y)2 2 .(14.6) 

0 2 2 

The solution proceeds with the evaluation of  matrix elements over the maximum- 
eigenvalue eigenvector. 

The solution to the present problem is completed following the outline of  
sect. 10. The resultant resonance energies for the q = + and q = - phases are 
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Fig. 13. Identification of the different types of 6-cycles 
in a pair of A-monomer cells, as considered in the text. 

2 + a aR 2 e ÷ = (-~a + ~ ) R  I 

- s R 2  . e = ~ R  1 + 

(14.7) 

For all (reasonable) parameterizations with R I > R 2 > 0 at all a, this yields the 
q = - phase as the sole stable phase (even, quite notably, at a = x = 1). As a conse- 
quence, this material should smoothly change with variations in a, and there should 
be no solitonic excitations. Should material containing other types of  impurities 
(defects), or should a different type of ensemble apply for the realized polymer 
growth process, the conclusions reached could in principle be different. However, 
since the q = - phase is presently quite stable (by ~> 2R 1/3 at all a with the para- 
meterization of (13.4)), a rather strong perturbation would be required to make a 
qualitative change so that the q = + phase is preferred (at some a). 

15. Conc lus ions  

Resonance-theoretic ideas have been developed for ensembles of random 
polymers. A choice was made to study ensembles with a single activity (or weight) 
for each type of  monomer unit. Secondly, a choice was made to focus on the con- 
jugated-circuit model for such random polymers. Then, an efficient transfer-matrix 
method was developed for this application, the practical computational implementa- 
tion of which is summarized in sect. 10. Following this, the method was illustrated for 
a few simple systems. The possibilities of  "degenerate" phases, solitonic excitations, 
and phase transitions (as a function of  monomer concentrations) have been noted. 
The transfer-matrix technique and these novel physical consequences should still 
apply under somewhat more general circumstances, including: first, the extension 
of  the ensemble averaging to allow nearest-neighbor pair activities; second, the exten- 
sion to allow more than two types of  monomer units; third, the application to other 
than (altemant) benzenoids; and fourth, the utilization of alternative types of reso- 
nance-theoretic models, such as that by Pauling and Wheland. 
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